Improving Topic Coherence with Latent Feature Word Representations in MAP Estimation for Topic Modeling

نویسندگان

  • Dat Quoc Nguyen
  • Kairit Sirts
  • Mark Johnson
چکیده

Probabilistic topic models are widely used to discover latent topics in document collections, while latent feature word vectors have been used to obtain high performance in many natural language processing (NLP) tasks. In this paper, we present a new approach by incorporating word vectors to directly optimize the maximum a posteriori (MAP) estimation in a topic model. Preliminary results show that the word vectors induced from the experimental corpus can be used to improve the assignments of topics to words.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Topic Models with Latent Feature Word Representations

Probabilistic topic models are widely used to discover latent topics in document collections, while latent feature vector representations of words have been used to obtain high performance in many NLP tasks. In this paper, we extend two different Dirichlet multinomial topic models by incorporating latent feature vector representations of words trained on very large corpora to improve the word-t...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Topic Modeling over Short Texts by Incorporating Word Embeddings

Inferring topics from the overwhelming amount of short texts becomes a critical but challenging task for many content analysis tasks, such as content charactering, user interest profiling, and emerging topic detecting. Existing methods such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA) cannot solve this problem very well since only very limited word co-o...

متن کامل

LTSG: Latent Topical Skip-Gram for Mutually Learning Topic Model and Vector Representations

Topic models have been widely used in discovering latent topics which are shared across documents in text mining. Vector representations, word embeddings and topic embeddings, map words and topics into a low-dimensional and dense real-value vector space, which have obtained high performance in NLP tasks. However, most of the existing models assume the result trained by one of them are perfect c...

متن کامل

Incorporating Word Correlation Knowledge into Topic Modeling

This paper studies how to incorporate the external word correlation knowledge to improve the coherence of topic modeling. Existing topic models assume words are generated independently and lack the mechanism to utilize the rich similarity relationships among words to learn coherent topics. To solve this problem, we build a Markov Random Field (MRF) regularized Latent Dirichlet Allocation (LDA) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015